VPX3U-XAVIER-CX6-SBC
Xavier Industrial, ConnectX-6, Video I/O, SBC Profile

KEY FEATURES
- Embedded Volta GPU with 512 CUDA cores (1.4 TFLOPS) & 64 Tensor cores (20 TOPS Int8)
- Embedded 8-core NVIDIA Carmel ARM64 CPU, 2.26GHz
- 32 GB LPDDR4 256-bit memory with up to 137 GB/s
- ConnectX-6, up to 100GbE Ethernet, PCIe Gen4
- SDI inputs/outputs, DP outputs, Analog outputs
- Module power: configurable from 50W - 90W

ADDITIONAL AGX XAVIER FEATURES
- 2x Deep Learning Accelerator (DLA) engines for inference operations, 10 TOPS (Int8)
- 2x Vision Accelerator engines for 7-way VLIW Vision Processor, 1.7 TOPS Int8
- Dedicated programmable audio processor
- 2x HEVC (H.265) and AVC (H.264) Volta NVENC and NVDEC with up to 4K-UHD encode resolution
- 1000 BASE-T Ethernet
- CUDA® 10, OpenGL® 4.6, OpenGL ES 3.2, Vulkan™ 1.0
- Flash Storage: 64 GB eMMC 5.1 with support for ECC
- USB 2.0 (up to 480 Mb/s); optional front panel port

CONNECTIVITY / SYSTEM MANAGEMENT
- Storage: NVMe 1TB
- PCI Express Gen4 x4 or x8
- Backplane Ethernet with 10/40/100 GBASE-KR4 and 10GBASE-KR data planes; supports GPUDirect RDMA
- Block-level hardware encryption and the use of dedicated encryption keys per user
- Switching is offloaded from the CPU and run on the ConnectX hardware with NVIDIA ASAP² technology
- On-board IPMI controller for system management
- Windows, Linux or ARM root complex

MECHANICAL / OPEN SYSTEMS ARCHITECTURE
- High level of ruggedization:
 - Operating temperature: -40° to +85°C
 - Vibration (sine wave): 10G peak, 5 - 2000Hz
 - Shock: 40G peak
- Dimensions: 160mm x 100mm x 25.4mm
- Weight: To be Announced
- ANSI/VITA 48, 65 (VPX REDI, OpenVPX)
- SOSA Aligned SBC slot profile 14.2.16

OVERVIEW
The VPX3U-XAVIER-CX6-SBC module provides the data processing capability needed for a variety of HPC tasks such as sensor data processing, machine vision, and other C4ISR tasks. This autonomous SOSA aligned module includes an NVIDIA Jetson AGX Xavier Industrial, an NVIDIA ConnectX-6 SmartNIC, and a WOLF FGX which provides support for video formats that are not native to the Xavier SoC.

The NVIDIA Xavier’s embedded Volta GPU provides the CUDA cores and Tensor cores for data processing, deep learning inference, machine vision, audio processing and video encoding/decoding. The 512 CUDA cores provides 1.4 TFLOPS for processing, while the 64 Tensor cores provides the underlying architecture required for an efficient inference engine which can achieve up to 20 TOPS (INT8) of deep learning inference computing. The Xavier Industrial model also includes new safety, reliability, and security features.

The NVIDIA ConnectX-6 SmartNIC provides secure, high-speed network data transfer and a configurable PCIe Gen4 switch. ConnectX-6 is ideal to meet the data transfer requirements for tasks such as sensor data processing and other C4ISR tasks. The ConnectX-6 also provides support for RDMA over Converged Ethernet (RoCE) and support for NVIDIA GPUDirect, enabling the fastest method for transferring data across the network to the GPU.

Unlocking the best performance requires the best cooling capability. WOLF’s advanced cooling technology is designed to move heat using a low weight, high efficiency path from the SoC die to the wedgelocks.

www.WOLFAdvancedTechnology.com
sales@wolf-at.com | International: +1 (905) 852-1163 | USA Toll-Free: 1 (800) 931-4114

This datasheet is preliminary and is subject to change
The following model provides 10/40/100 GBASE-KR4, one 10 BASE-KR, one 1000GBASE-T, and PCIe Gen4 x4.

The following model provides two 10 BASE-KR, one 1000GBASE-T and two PCIe Gen4 x8.
NVIDIA Jetson AGX Xavier Industrial

Jetson AGX Xavier Industrial features an embedded NVIDIA Volta GPU with 512 CUDA Cores and 64 Tensor Cores, two NVIDIA deep learning accelerators, two vision accelerators, an eight-core NVIDIA Carmel Arm CPU, and a video encoder and decoder. The NVIDIA CUDA-X accelerated computing stack and JetPack SDK support enables the Jetson AGX Xavier Industrial to be a fully software-defined platform.

The Jetson AGX Xavier Industrial combines the processing capabilities of the Xavier System-on-a-Module (SoM) with new reliability, safety and security features. These include error correction codes, single error correction, double error detection and parity protection to deliver internal RAM resilience, address and data bus error detection and correction and IP resiliency in harsh environment applications. It also includes hardware-verified secure boot, hardware-accelerated cryptography, support for encrypted storage, memory, and other security features to protect customer software.

Tensor Cores for Artificial Intelligence and HPEC

Tensor Cores are designed to speed up the tensor / matrix computations used for deep learning neural network training and inferencing operations. NVIDIA Ampere architecture GPUs include the third-generation Tensor Core design which supports many new data types for improved performance, efficiency, and programming flexibility, including a new sparsity feature and a new Tensor Float 32 (TF32) precision mode.

NVIDIA provides CUDA-X AI and CUDA-X HPEC libraries which have been designed to work with NVIDIA Tensor Core GPUs to provide the tools needed to accelerate development of applications for AI and HPEC.

Hardware Accelerated Video Encode / Decode

The Ampere GPU includes the NVENC video encode (version 7.2) and NVENC decode (version 5) hardware acceleration engine. Using the Ampere GPU for video encoding provides an efficient, high quality method to achieve real time 8K and 4K encoding without burdening the system CPU. The NVIDIA Video Codec SDK provides a complete set of APIs, samples and documentation for hardware accelerated video encode and decode.

ConnectX-6 PCIe Gen4 and Ethernet 100GbE

Getting large amounts of data into and out of a module is an important system design consideration. The WOLF-12T0 module includes a ConnectX-6 SmartNIC, which provides a configurable PCIe Gen4 interface. It also provides up to 100GBASE-KR4 on the data plane, RDMA over Converged Ethernet (RoCE) with support for NVIDIA GPUDirect RDMA, and enhanced security features such as hardware-verified secure boot, hardware-accelerated cryptography, and encrypted storage.

SOSA Slot Profile Support

The Sensor Open Systems Architecture (SOSA) Consortium grew out of a U.S. Department of Defense (DoD) initiative to define open standard electronic architectures to ensure component interoperability, reduce costs, encourage innovation, and help to ensure a supply of needed products.

This module supports SOSA aligned SBC slot profiles. The default profile is:

- SLT3-PAY-1F1F2U1TU1T1U1T-14.2.16

WOLF also offers a module which supports the SOSA aligned Payload slot profile, VPX3U-XAVIER-CX6-HPC.

This datasheet is preliminary and is subject to change
ORDERING CODES

The following table defines series of common order codes for the VPX3U-XAVIER-SBC module. The asterisks denote characters of the part number that are defined based on common configuration options. Some common configuration options for this module are:

- Default Power Threshold
- Conformal Coatings
- PCIe Configuration Options
- Network Security Options
- Variant Locked
- Display Outputs

<table>
<thead>
<tr>
<th>Ordering Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>12T033-F0*VPX3v10</td>
<td>3U VPX, Conduction Cooled, 1”, NVIDIA Xavier, ConnectX-6, WOLF FGX, 10/40/100 GBASE-KR4, one 10 BASE-KR, one 1000GBASE-T, PCIe Gen4 x4</td>
</tr>
<tr>
<td>12T033-F1*VPX3v10</td>
<td>3U VPX, Conduction Cooled, 1”, NVIDIA Xavier, ConnectX-6, WOLF FGX, two 10 BASE-KR, one 1000GBASE-T, PCIe Gen4 x8</td>
</tr>
</tbody>
</table>

Contact Sales for the latest Ordering Numbers and available options

MANUFACTURING AND QUALITY ASSURANCE

WOLF designs modules to pass the following environmental standards:

- MIL-STD-810 (United States Military Standard for Environmental Engineering Considerations and Laboratory Tests)
- MIL-HDBK-217 (Reliability Prediction of Electronic Equipment)
- RTCA DO-160 (Environmental Conditions and Test Procedures for Airborne Equipment) on request

WOLF complies with the following management systems:

- AS9100D: Quality Management System - Requirements for Aviation, Space and Defense Organizations (certified)
- ISO 9001:2015: Quality management systems (certified)
- AS5553: Counterfeit Electronic Parts; Avoidance, Detection, Mitigation, and Disposition (compliant)
- NIST SP 800-171: Protecting Controlled Unclassified Information in Nonfederal Systems (compliant)

Boards are manufactured to meet the following standards:

- IPC-A-610 CLASS 3 (Acceptability of Electronic Assemblies)
- IPC 6012 CLASS 3 (Qualification and Performance Specification for Rigid Printed Boards, Class 3 for High Reliability Electronic Products)
- IPC J-STD-001 (Requirements for Soldered Electrical and Electronic Assemblies)

Caveat: integrated third party modules may not meet the same standards as WOLF manufactured modules.

This datasheet is preliminary and is subject to change